https://codenews.cc/chatgpt?simple=true gpt联网旁边上传本地图片
这个算法用于计算控制图的控制限 L,使得控制图的在制程内平均运行长度(IC ARL)等于指定的 ARL0。以下是用Python实现这个算法的代码:
import numpy as np
from scipy.stats import multivariate_normal
def generate_samples(T0, m0, N, d):
# Generate N sequences of length T0 from a standard multivariate normal distribution
return [multivariate_normal.rvs(mean=np.zeros(d), cov=np.identity(d), size=T0 + m0) for _ in range(N)]
def calculate_charting_statistic(X):
# Placeholder for the function that calculates the charting statistic Qbt
# Replace this with the actual calculation
return np.max(np.abs(X), axis=1)
def calculate_ARL(L, sequences, T0):
# Placeholder for the function that calculates ARL given L
# Replace this with the actual calculation
ARLs = []
for seq in sequences:
Qbt = calculate_charting_statistic(seq)
ARL = np.argmax(Qbt > L) if np.any(Qbt > L) else T0
ARLs.append(ARL)
return np.mean(ARLs)
def find_control_limit(ARL0, epsilon, T0, m0, N, d):
while True:
sequences = generate_samples(T0, m0, N, d)
Qbt_values = [calculate_charting_statistic(seq) for seq in sequences]
Lu = min([np.max(Qbt) for Qbt in Qbt_values])
Ll = 0
ARL = calculate_ARL(Lu, sequences, T0)
if ARL < ARL0:
T0 += 1
continue
L = Lu
while abs(ARL - ARL0) >= epsilon:
if ARL > ARL0:
L = (L + Ll) / 2
else:
L = (L + Lu) / 2
ARL = calculate_ARL(L, sequences, T0)
return L
# Parameters
ARL0 = 200 # Desired ARL0
epsilon = 0.01 # Tolerance
T0 = 100 # Initial sequence length
m0 = 5 # Initial number of samples
N = 100 # Number of replications
d = 2 # Dimensionality of the data
# Find the control limit
L = find_control_limit(ARL0, epsilon, T0, m0, N, d)
print("Calculated control limit L:", L)
注意事项:
1. `calculate_charting_statistic` 和 `calculate_ARL` 函数是占位符,需要根据具体的控制图类型(例如Hotelling T²图、CUSUM图等)来实现。
2. 本代码假设数据来自标准多元正态分布。
3. 参数 `ARL0`、`epsilon`、`T0`、`m0`、`N` 和 `d` 需要根据具体应用场景进行调整。
请根据实际需求调整和完善代码中的细节。
生成的代码我未做验证。反正是gpt4o生成的,就是本地上传图片进行问答,会自动切换到使用4o模型